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Wavelet Transform 
Inverse 2D wavelet transform 
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Stable Analysis and Synthesis Operators 
wavelets and scaling functions 

 
To reveal geometric image properties, wavelet frames are constructed 

with mother wavelets having a direction selectivity, providing 

information on the direction of sharp transitions such as edges and 

textures. 

 

Wavelet frames yield high-amplitude coefficients in the neighborhood 

of edges, and cannot take advantage of their geometric regularity to 

improve the sparsity of the representation. 

 

Frames are potentially redundant and thus more general than bases, 

with a redundancy measured by frame bounds. They provide the 

flexibility needed to build signal representations with unstructured 

families of vectors. 
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Directional Wavelet Frames 
Directional Vanishing Moment 

 
A directional wavelet 𝜓𝛼(𝑥) with 𝑥 = (𝑥1, 𝑥2) ∈ ℝ2 of angle 𝛼 is a vavelet 

having 𝑝 directional vanishing moments along any one-dimensional line of 

direction 𝛼 +
𝜋

2
 in the plane: 

∀𝜌𝜖ℝ,  𝜓𝛼 𝜌 cos 𝛼 − 𝑢 sin 𝛼 , 𝜌 sin 𝛼 + 𝑢 cos 𝛼 𝑢𝑘𝑑𝑢 = 0   for  0 ≤ 𝑘 ≤ 𝑝,  

    but does not have directional vanishing moments along the direction 𝛼. 

𝜌 

𝑥1 

𝑥2 

𝑢 

𝛼 

 
𝑥1 = 𝜌 cos 𝛼 − 𝑢 sin 𝛼
𝑥2 = 𝜌 sin 𝛼 + 𝑢 cos 𝛼

 

Directional wavelets may be derived by 

rotating a single mother wavelet 𝜓(𝑥1, 𝑥2) 

having vanishing moments in the horizontal 

direction, with a rotation operator 𝑅𝛼  of 

angle 𝛼 in ℝ2. 
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Directional Wavelet Frames 
Ridgelet Transform 

 

𝜓𝑢,𝑠 𝑡 =
1

𝑠
𝜓

𝑡 − 𝑢

𝑠
 

𝑡 = 𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 
Ridgelet 

wavelet 

𝜓𝑢,𝑠,𝜃 𝑥 =
1

𝑠
𝜓

𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 − 𝑢

𝑠
 

𝐶𝑅𝑇𝑓 𝑢, 𝑠, 𝜃 =  𝑓(𝑥)𝜓𝑢,𝑠,𝜃 𝑥 𝑑𝑥 

Ridgelet transform 

 Ridgelet function which is oriented at an 

angle 𝜃  is constant along the lines 

𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 = 𝑐𝑜𝑛𝑠𝑡  

𝑥1 

𝑥2 

𝜃 

To overcome the weakness of wavelets in higher dimensions, Candes and 

Donoho proposed ridgelets which deal effectively with line singularieies in 2-D. 
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Directional Wavelet Frames 
Ridgelet Transform 

 
 In 2-D, points and lines are related via the Radon transform, thus the wavelet 

and ridgelet transform are linked via the Radon transform. 

𝑅𝑓 𝜃, 𝑡 =  𝑓(𝑥)𝛿 𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 − 𝑡 𝑑𝑥 Radon transform 

𝐶𝑅𝑇𝑓 𝑢, 𝑠, 𝜃 =  𝑓(𝑥)𝜓𝑢,𝑠,𝜃 𝑥 𝑑𝑥 

𝐶𝑅𝑇𝑓 𝑢, 𝑠, 𝜃 =  𝜓𝑢,𝑠 𝑡 𝑅𝑓 𝜃, 𝑡 𝑑𝑡 

Ridgelet transform 

Ridgelet transform 

Ridget transform can be calculated by applying 1-D wavelet transform to 

Radon transform 𝑅𝑓 𝜃, 𝑡  along 𝑡. 

𝑅𝑓 𝜃, 𝑡  can be obtained from the projection-slice theorem. 
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Directional Wavelet Frames 
Ridgelet Transform 

  the Radon transform can be obtained by applying the 1-D inverse Fourier 

transform to the 2-D Fourier transform restricted to radial lines going through 

the origin. 

Fourier transform of 𝑅𝑓 𝜃, 𝑡        𝑒−𝑖𝜉𝑡𝑅𝑓 𝜃, 𝑡 𝑑𝑡 

=  𝑒−𝑖𝜉𝑡  𝑓 𝑥 𝛿 𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 − 𝑡 𝑑𝑥 𝑑𝑡 

=  𝑓 𝑥  𝑒−𝑖𝜉𝑡𝛿 𝑥1 cos 𝜃 + 𝑥2 sin 𝜃 − 𝑡 𝑑𝑡 𝑑𝑥 

=  𝑓 𝑥 𝑒−𝑖𝜉(𝑥1 cos 𝜃+𝑥2 sin 𝜃)𝑑𝑥 

=  𝑓 𝑥 𝑒−𝑖𝑥1(𝜉 cos 𝜃)−𝑖𝑥2(𝜉 sin 𝜃)𝑑𝑥 

= 𝐹(𝜉 cos 𝜃 , 𝜉 sin 𝜃) 
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Directional Wavelet Frames 
Ridgelet Transform 
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Directional Wavelet Frames 
Dyadic directional wavelet transform 

 

𝜓𝑢,𝑠 𝑡 =
1

𝑠
𝜓

𝑡 − 𝑢

𝑠
 

𝑠 = 2𝑗 

Translation-invariant wavelet dictionaries  wavelets 

𝒟 = 𝜓𝑢,2𝑗 𝑡 =
1

2𝑗
𝜓

𝑡 − 𝑢

2𝑗
𝑢𝜖ℝ,𝑗𝜖𝕫

 

𝑊𝑓 𝑢, 2𝑗 = 𝑓, 𝜓𝑢,2𝑗 = 𝑓 ∗ 𝜓
2𝑗 𝑢  

𝜓𝑢,𝑠
𝛼 𝑥 =

1

𝑠
𝜓𝛼

𝑥 − 𝑢

𝑠
 

𝑠 = 2𝑗  
𝜃 = 𝑘𝜋/𝐾 

Translation-invariant directional wavelet dictionaries  Directional wavelets 

𝒟 = 𝜓
𝑢,2𝑗
𝛼 𝑥 =

1

2𝑗
𝜓𝛼

𝑥 − 𝑢

2𝑗
𝑢𝜖ℝ2,𝛼∈Θ,𝑗𝜖𝕫

 

𝑊𝑓 𝑢, 2𝑗 , 𝛼 = 𝑓, 𝜓
𝑢,2𝑗
𝛼 = 𝑓 ∗ 𝜓  2𝑗

𝛼
𝑢  

1-D dyadic wavelet transform: 

Dyadic directional wavelet transform: 
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Directional Wavelet Frames 
Dyadic directional wavelet transform 

 
𝑊𝑓 𝑢, 2𝑗 , 𝛼 = 𝑓, 𝜓

𝑢,2𝑗
𝛼 = 𝑓 ∗ 𝜓  2𝑗

𝛼
𝑢  

A wavelet 𝜓
2𝑗
𝛼 𝑥 − 𝑢  has a support dilated by 2𝑗 , located in the 

neighborhood of 𝑢 and oscillates in the direction of 𝛼 +
𝜋

2
. 

 If 𝑓(𝑥) is constant over the support of 𝜓
𝑢,2𝑗
𝛼  along lines of direction 𝛼 +

𝜋

2
, 

then 𝑓, 𝜓
𝑢,2𝑗
𝛼 = 0 because of its directional vanishing moments. 

 In particular, this coefficient vanishes in the neighborhood of an edge 

having a tangent in the direction 𝛼 +
𝜋

2
 

 If the edge angle deviates from 𝛼 +
𝜋

2
, then it produces large amplitude 

coefficients, with a maximum typically when the edge has a direction 𝛼. 

Thus, the amplitude of wavelet coefficients depends on the local orientation 

of the image structures. 
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Directional Wavelet Frames 
Gabor Wavelets 

 

 In the Fourier plane, the energy of this 

Gabor wavelet is mostly concentrated 

around (−
𝜂 sin 𝛼

2𝑗 ,
𝜂 cos 𝛼

2𝑗 ), in a neighborhood 

proportional to 
1

2𝑗. 

𝜓𝛼 𝑥1, 𝑥2 = 𝑔(𝑥1, 𝑥2)𝑒−𝑖𝜂(−𝑥1 sin 𝛼+𝑥2 cos 𝛼)  

𝑔 𝑥1, 𝑥2 =
1

2𝜋
𝑒−(𝑥1

2+𝑥2
2)/2 

𝜓 𝛼 𝜔1, 𝜔2 = 𝑔(𝜔1 + 𝜂 sin 𝛼 , 𝜔2 − 𝜂 cos 𝛼)  

𝜓 
2𝑗
𝛼 (𝜔1, 𝜔2) = 2𝑗𝑔(2𝑗𝜔1 + 𝜂 sin 𝛼 , 2𝑗𝜔2 − 𝜂 cos 𝛼)  

𝜓 
2𝑗

𝜋
6 (𝝎) 

Gabor wavelet: 

Gaussian window: 

Fourier transform: 
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Directional Wavelet Frames 
Gabor Wavelets 

 

The wavelet transform energy |𝑊𝑓 𝑢, 2𝑗 , 𝛼 |2 is large 

when the angle 𝛼 and scale 2𝑗 match the direction and 

scale of high-energy texture components in the 

neighborhood of 𝑢. 
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Directional Wavelet Frames 
Gabor Wavelets 

 
A translation-invariant wavelet transform 𝑊𝑓 𝑢, 2𝑗 , 𝛼  for all scales 2𝑗 , and 

angle 𝛼 requires a large amount of memory.  To reduce computation and 

memory storage, the translation parameter is discretized. 

𝒟 = 𝜓
𝑢,2𝑗
𝛼 𝑥 =

1

2𝑗
𝜓𝛼

𝑥 − 𝑢

2𝑗
𝑢𝜖ℝ2,𝛼∈Θ𝑗𝜖𝕫

 

𝒟 = 𝜓
2𝑗
𝛼 (𝑥 − 𝑢) =

1

2𝑗
𝜓𝛼

𝑥 − 𝑢02𝑗𝑛 

2𝑗
𝑛𝜖𝕫2,𝛼∈Θ𝑗𝜖𝕫

 

𝑢 = 𝑢02𝑗𝑛 

Translation-invariant directional wavelet dictionaries  
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Curvelet frames were introduced by Candes and Donoho to construct sparse 

representation for images including edges that are geometrically regular. 

 

Similarity to wavelet: curvelet frames are obtained by rotating, dilating, and 

translating elementary waveforms. 

 

Difference: curvelets have a highly elongated support obtained with a 

parabolic scaling using different scaling factors along the curvelet width and 

length.  

 

These anisotropic waveforms have a much better direction sensitivity than 

directional wavelets. 

Curvelet  
Dyadic Curvelet Transform 
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Curvelet  
First Generation of Curvelets 

First generation of curvelets are based on ridgelets. Applying ridgelet transform 

to small blocks (a curved edge is almost straight at sufficiently fine scales) 
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Curvelet  
Dyadic Curvelet Transform (Second Generation) 

 

𝑐2𝑗(𝑥1, 𝑥2) =
1

23𝑗/4
𝑐

𝑥1

2𝑗/2
,
𝑥1

2𝑗
 

A curvelet is function 𝑐 𝑥  having vanishing moments along the horizontal 

direction like a wavelet. However, as opposed to wavelets, dilated curvelets 

are obtained with a parabolic scaling law that produces highly elongated 

waveforms at fine scales: 

𝑐 𝑥 = 𝑐 𝑥1, 𝑥2  

𝑐
2𝑗
𝛼 𝑥 = 𝑐2𝑗(𝑅𝛼𝑥) 

𝑐
𝑢,2𝑗 
𝛼 𝑥 = 𝑐

2𝑗,𝑢
𝛼 𝑥 − 𝑢  

dilating 

rotating 

translating 

𝜓2𝑗(𝑥1, 𝑥2) =
1

2𝑗
𝑐

𝑥1

2𝑗
,
𝑥1

2𝑗
 

𝜓 𝑥 = 𝑐 𝑥1, 𝑥2  

𝜓
2𝑗
𝛼 𝑥 = 𝜓2𝑗(𝑅𝛼𝑥) 

𝜓
2𝑗,𝑢
𝛼 𝑥 = 𝜓

𝑢,2𝑗
𝛼 𝑥 − 𝑢  

dilating 

rotating 

translating 

𝑊𝑓 𝑢, 2𝑗 , 𝛼 = 𝑓, 𝜓
𝑢,2𝑗
𝛼 = 𝑓 ∗ 𝜓  2𝑗

𝛼
𝑢  𝐶𝑓 𝑢, 2𝑗 , 𝛼 = 𝑓, 𝑐

𝑢,2𝑗
𝛼 = 𝑓 ∗ 𝑐  

2𝑗
𝛼 𝑢  
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Curvelet  
Dyadic Curvelet Transform 

 
𝑐2𝑗(𝑥1, 𝑥2) =

1

23𝑗/4
𝑐

𝑥1

2𝑗/2
,
𝑥1

2𝑗
 𝜓2𝑗(𝑥1, 𝑥2) =

1

2𝑗
𝑐

𝑥1

2𝑗
,
𝑥1

2𝑗
 

Curvelet frames were introduced by Candes and Donoho to construct sparse 

representation for images including edges that are geometrically regular. 

 

Similarity to wavelet: curvelet frames are obtained by rotating, dilating, and 

translating elementary waveforms. 

 

Difference: curvelets have a highly elongated support obtained with a 

parabolic scaling using different scaling factors along the curvelet width and 

length.  

 

These anisotropic waveforms have a much better direction sensitivity than 

difrectional wavelets. 
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Curvelet  
Dyadic Curvelet Transform 

 To obtain a tight frame, the Fourier transform of a curvelet at scale 2𝑗 is 

defined by   

𝑐 2𝑗(𝜔) ≝ 23𝑗/4𝜓 2𝑗(2𝑗𝑟)𝜙 
2𝜃

2 𝑗/2 𝜋
 , with   𝜔 = 𝑟(cos 𝜃 , sin 𝜃) 

1-D wavelet   1-D angular window 
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Curvelet  
Dyadic Curvelet Transform 

 To obtain a tight frame, the Fourier transform of a curvelet at scale 2𝑗 is 

defined by   

𝑐 2𝑗(𝜔) ≝ 23𝑗/4𝜓 (2𝑗𝑟)𝜙 
2𝜃

2 𝑗/2 𝜋
 , with   𝜔 = 𝑟(cos 𝜃 , sin 𝜃) 

 The wavelet  𝜓  is chosen to have a compact support in [
1

2
, 2] and satisfies the 

dyadic frequency covering: 

∀𝑟𝜖ℝ∗,  𝜓 2𝑗𝑟
2

∞

𝑗=−∞

= 1 

1-D wavelet   1-D angular window 

 A translation-invariant dyadic curvelet dictionary  is a dyadic translation-

invariant tight frame that defines a complete and stable signal representation. 
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Curvelet  
Dyadic Curvelet Transform 

 To obtain a tight frame, the Fourier transform of a curvelet at scale 2𝑗 is 

defined by   

 Theorem 1: (Candes, Donoho )  For any 𝑓𝜖𝐋2(ℝ𝟐)𝐈𝐦Φ 

𝑓 2 =  2−3𝑗/2

𝑗𝜖𝕫

 𝐶𝑓 ∙ , 2𝑗 , 𝛼
2

𝛼∈Θ𝑗

, 

    and  

𝑓 𝑥 =  2−
3𝑗
2

𝑗𝜖𝕫

 𝐶𝑓 ∙ , 2𝑗 , 𝛼 ∗

𝛼∈Θ𝑗

𝑐
2𝑗
𝛼 𝑥 . 
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Curvelet  
Curvelet Properties 

 Since the Fourier transform 𝑐 2𝑗(𝜔1, 𝜔2) is zero in the neighborhood of the 

vertical axis  𝜔1 = 0, 𝑐2𝑗(𝑥1, 𝑥2) has an infinite number of vanishing moments 

in the horizontal direction 

∀𝜔2,
𝜕𝑞𝑐 2𝑗

𝜕𝑞𝜔2
0, 𝜔2 = 0 ⟹ ∀𝑞 ≥ 0, ∀𝑥2,  𝑐2𝑗 𝑥1, 𝑥2 𝑥1

𝑞
𝑑𝑥1 = 0 

A rotated curvelet 𝑐
𝑢,2𝑗 
𝛼  has vanishing moments in the direction 𝛼 + 𝜋/2, 

whereas its support is elongated in the direction 𝛼. 
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Curvelet  
Discretization of Translation 

 Curvelet tight frames are constructed by sampling the translation parameter 𝑢. 

These tight frames provide sparse representations of signals including regular 

geometric structures. 

𝒟 = 𝑐
𝑢,2𝑗
𝛼 𝑥

𝑢𝜖ℝ2,𝛼∈Θ𝑗𝜖𝕫
 

𝒟 = 𝑐𝑗,𝑚
𝛼 (𝑥) = 𝑐

2𝑗
𝛼 (𝑥 − 𝑢𝑚

(𝑗,𝛼)
)

𝑚𝜖𝕫2,𝛼∈Θ,𝑗𝜖𝕫
 

𝑢𝑚
(𝑗,𝛼)

= 𝑅𝛼(2𝑗/2𝑚1, 2𝑗𝑚2) 

The curvelet sampling grid depends on the scale 2𝑗 and on the angle 𝛼. 

Sampling intervals are proportional to the curvelet width 2𝑗 in the direction 

𝛼 + 𝜋/2 and to its length 2𝑗/2 in the direction 𝛼. 
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Curvelet  
Discretization of Translation 

 
The curvelet sampling grid depends on the scale 2𝑗 and on the angle 𝛼. 

Sampling intervals are proportional to the curvelet width 2𝑗 in the direction 

𝛼 + 𝜋/2 and to its length 2𝑗/2 in the direction 𝛼: 

∀𝑚 = 𝑚1, 𝑚2 𝜖𝕫2, 𝑢𝑚
(𝑗,𝛼)

= 𝑅𝛼(2𝑗/2𝑚1, 2𝑗𝑚2) 
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Curvelet  
Discretization of Translation 

 
This curvelet family is a tight frame of 𝐋2 ℝ2 .  

𝒟 = 𝑐𝑗,𝑚
𝛼 (𝑥) = 𝑐

2𝑗
𝛼 (𝑥 − 𝑢𝑚

(𝑗,𝛼)
)

𝑚𝜖𝕫2,𝛼∈Θ,𝑗𝜖𝕫
 

 Theorem 2: (Candes, Donoho )  For any 𝑓𝜖𝐋2 ℝ𝟐  

𝑓 2 =   𝑓, 𝑐
𝑢,2𝑗
𝛼  

2

𝛼∈Θ𝑗𝑗𝜖𝕫

, 

    and  

𝑓 𝑥 =    𝑓, 𝑐
𝑢,2𝑗
𝛼 𝑐𝑗,𝑚

𝛼 (𝑥)

𝑚𝜖𝕫2𝛼∈Θ𝑗𝑗𝜖𝕫

. 
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Curvelet  
Wavelet versus Curvelet Coefficients 

 
An edge is covered by fewer curvelets than wavelets having a direction equal 

to the edge direction. 

 

 If the angle 𝛼 of the curvelet deviates from 𝜃, then curvelet coefficients decay 

quickly because of the narrow frequency localization of curvelets. This gives a 

high-directional selectivity to curvelets. 
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Curvelet  
Fast curvelet Decomposition Algorithm 

 
The fast curvelet transform replaces the polar tiling of the Fourier domain by a 

recto-polar tiling. 

• Computation of the two-dimensional DFT 𝑓 [𝑘] of 𝑓[𝑛]. 

• For each 𝑗  and the corresponding 2− 𝑗/2 +2  angles 𝛼 , calculation of 

𝑓 [𝑘]𝑐 𝑗
𝛼[−𝑘]. 

• Computation of the inverse Fourier transform of 𝑓 [𝑘]𝑐 𝑗
𝛼[−𝑘] on the smallest 

possible warped frequency rectangle including the wedge support of  𝑐 𝑗
𝛼[−𝑘]. 
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Curvelet  
Denoising 
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Contourlet  
Fast curvelet Decomposition Algorithm 

 
 curvelet constructions require a rotation operation and correspond to a 2-D 

frequency partition based on the polar coordinate. This makes the curvelet 

construction simple in the continuous domain but causes the implementation 

for discrete images—sampled on a rectangular grid—to be very challenging. 

  In particular, approaching critical sampling seems difficult in such discretized 

constructions. 

 This fact motivates the development of a directional multiresolution transform 

like curvelets, but directly in the discrete domain, which results in the 

contourlet construction. 

Laplacian Pyramid Directional Filter Banks 

 The Laplacian pyramid is first 

used to capture the point 

discontinuities, and then followed 

by a directional filter bank (DFB) 

to link point discontinuities into 

linear structures. 
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Contourlet  
Laplacian Pyramid 

 
The LP decomposition at each level generates a downsampled lowpass version 

of the original and the difference between the original and the prediction, 

resulting in a bandpass image. In particular, approaching critical sampling 

seems difficult in such discretized constructions. 

analysis filter synthesis filter sampling matrix 

lowpass 

bandpass 

𝑀 =
2 0
0 2

 

𝑥𝑑 𝑛1, 𝑛2 = 𝑥 2𝑛1, 2𝑛2  

𝑋𝑑 𝜔1, 𝜔2 =
1

4
  𝑋(

𝜔1 − 2𝜋𝑖

2
,
𝜔2 − 2𝜋𝑗

2
)

1

𝑖=0

1

𝑗=0

 

𝑥𝑑 
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 Traditional separable 2D filter banks 

Rows Columns 

1-D filter 

1-D filter Output Input 

Separable Filters 

Diagonal sampling matrix 
2 0
0 1

,       
1 0
0 2

 

Only Rectangular Shape 

Contourlet 
Traditional 2D filter banks 
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2-D filter 1  2-D filter 2  Output 

 Traditional Directional Filter Banks 

 A simple example of 2-channel directional filter banks 

non−diagonal sampling matrix 

𝑄0 =
1 −1
1 1

,  𝑄1 =
1 1

−1 1
 

Non-Separable Filters 

0 

0 

0 

0 

More flexible 

partition 

Contourlet 
Quincunx Filter Bank 
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Contourlet  
2-D Sampling 

 

Integer lattice Λ Lattice Λ𝑀 generated by sampling matrix 𝑀 

Example 1: Sampling matrix 𝑀 =
2 1

−1 1
 

 Integer lattice Λ = ℤ2 

 Sublattice Λ𝑀 = 𝑀𝑛: 𝑛 ∈ Λ = 𝑀𝑛: 𝑛 ∈ Λ  
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Contourlet  
2-D Sampling 

 

Example 1: Downsampling with matrix 𝑀 =
2 1

−1 1
 

 𝑀𝑛 =
2 1

−1 1

𝑛1

𝑛2
=

2𝑛1 + 𝑛2

−𝑛1 + 𝑛2
 

 Downsampled signal 𝑥𝑑 𝑛 = 𝑥 𝑀𝑛  

 Downsampled signal in frequency domain 𝑋𝑑(𝜔1, 𝜔2)? 

𝑥𝑑 1,1 = 𝑥 3,0  
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Contourlet  
2-D Sampling 

 

𝑋𝑑(𝜔) =
1

𝑀
 𝑋(

𝜔

𝑀
−

2𝜋𝑘

𝑀
)

𝑀−1

𝑘=0

 

𝑋𝑑(𝜔) =
1

det 𝑀
 𝑋(𝑀−𝑇𝜔 − 2𝜋𝑀−𝑇𝑘𝑙)

det 𝑀 −1

𝑙=0

 

Integer matrix vector coset vector 

1-D sampling 

2-D sampling 

𝜔 ∈ ℝ, 𝑘 ∈ ℤ, 𝑀 ∈ ℤ 

Example 1: Subsampling with matrix 𝑀 =
2 1

−1 1
 

 det 𝑀 = 3 

 𝑘0 =
0
0

, 𝑘1 =
1
0

, 𝑘0 =
2
0
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Contourlet  
2-D Sampling 

 

Example 1: Upsampling with matrix 𝑀 =
2 1

−1 1
 

 𝑀−1 =
1

3

1 −1
1 2

, 𝑀−1𝑛 =
1

3

𝑛1 − 𝑛2

𝑛1 + 2𝑛2
 

 Upsampled signal 𝑥𝑢 𝑛 =  
𝑥 𝑀−1𝑛 ,  if 𝑀−1𝑛 ∈ Λ
0,                otherwise    

 

 Upsampled signal in frequency domain 𝑋𝑢(𝜔1, 𝜔2)? 

𝑥𝑢 3,0 = 𝑥 1,1  
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Contourlet  
2-D Sampling 

 

𝑋𝑢(𝜔) = 𝑋(𝑀𝜔) 𝑋𝑢(𝜔) = (𝑀𝑇𝜔) 

1-D upsampling 2-D upsampling 

Example 1: Upsampling with matrix 𝑀 =
2 1

−1 1
 

 𝑋𝑢 𝜔 = 𝑀𝑇𝜔 =
2𝜔1 − 𝜔2

𝜔1 + 𝜔2
 

 The rectangular spectral region  

      {−𝜋 ≤ 𝜔1 ≤ 𝜋} ∩ {−𝜋 ≤ 𝜔2 ≤ 𝜋}  

      is mapped to the parallelogram-shaped region  

      {−𝜋 ≤ 2𝜔1 − 𝜔2 ≤ 𝜋} ∩ {−𝜋 ≤ 𝜔1 + 𝜔2 ≤ 𝜋}  
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Contourlet  
Directional Filter Bank 

 
 Theorem 2: (Multirate identities)  Downsampling by M followed 

by filtering with a filter 𝐻(𝜔) is equivalent to filtering with the 

filter 𝐻(𝑀𝑇𝜔)  which is obtained by upsampling 𝐻(𝜔)  by M, 

before downsampling. 

 Proof: 

𝑦1 𝑛 = 𝑥 𝑀𝑛 ∗ ℎ 𝑛  

𝑦2 𝑛 = 𝑥 𝑛 ∗ ℎ𝑢 𝑛 ↓ 𝑀 = 𝑥 𝑀𝑛 ∗ ℎ 𝑛  

⟹ 𝑦1 𝑛 = 𝑦2 𝑛  
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Contourlet  
Directional Filter Bank 

 
Quincunx sublattice with matrix 𝑄0 =

1 −1
1 1

, 𝑄1 =
1 1

−1 1
 

 det 𝑄0 = det 𝑄1 = 2, one out of two points is retained. 

 

𝑋 𝜔 =
1

2
𝐻0 𝜔 𝐺0 𝜔 + 𝐻1 𝜔 𝐺1 𝜔 𝑋 𝜔 + 

1

2
[𝐻0 𝜔 + 𝜋 𝐺0 𝜔 + 𝐻1 𝜔 + 𝜋 𝐺1 𝜔 ]𝑋(𝜔 + 𝜋) 
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Contourlet  
Directional Filter Bank 

 First two levels of Quincunx Filter Bank 

𝑄0 =
1 −1
1 1

 

𝑄1 =
1 1

−1 1
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Contourlet  
Directional Filter Bank 

 

𝑅0 =
1 1
0 1

 

𝑅1 =
1 −1
0 1
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Contourlet  
Multiscale 

 Under certain regularity conditions, the lowpass synthesis filter in the  iterated 

LP uniquely defines a unique scaling function 𝜙(𝑡) ∈ 𝐿2 𝑅2  that satisfies the 

following two-scale equation 

𝜙 𝑡 = 2  𝑔[𝑛]𝜙 2𝑡 − 𝑛

𝑛∈ℤ2

 

 𝜙𝑗,𝑛 𝑡 =
1

2𝑗 𝑡 𝜙
𝑡−2𝑗𝑛

2𝑗
𝑛∈ℤ2

 is an orthonormal basis for approximation 

subspace 𝐕𝑗 at scale 2𝑗. 

 

 𝜓𝑗,𝑛
𝑖

(𝑡) =
1

2𝑗 𝑡 𝜓(𝑖) 𝑡−2𝑗𝑛

2𝑗
0≤𝑖≤3,𝑛∈ℤ2

 is a tight frame for 𝐖𝑗 
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Contourlet  
Multiscale 

 
 𝜆𝑗,𝑛

𝑙
(𝑡) =  𝑑𝑘

𝑙
𝑚∈ℤ2

1

2𝑗 𝑡 [𝑚 − 𝑆𝑘
𝑙

𝑛]𝜇𝑗,𝑚 𝑡
𝑛∈ℤ2

 is a tight frame of a 

detail directional subspace 𝐖𝑗,𝑘
𝑙
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Contourlet  
Wavelet Versus Contourlets 

 Contourlets offer a much richer set of directions and shapes 

Contourlets are more effective in capturing smooth contours and 

geometric structures in images. 

Wavelets  contourlets 
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Contourlet  
Nonlinear approximation 

 
Nonlinear approximation by the wavelet and contourlet transforms. In each case, 

the original image Barbara of size 512×512 is reconstructed from the 4096-

most significant coefficients. Only part of images are shown for detail 

comparison. 
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Contourlet  
Denoising 
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Contourlet  
Properties 

 
The contourlet expansions are defined on rectangular grids. Its kernel 

functions cannot be obtained by simply rotating a single function. 

 

Contourlets have 2-D frequency partition on centric squares, rather than 

centric circles. 

 

The contourlet transform has fast filter bank algorithms and convenient tree 

structures. 

 

With FIR filters, the iterated contourlet filter bank leads to compactly 

supported contourlet frames. 
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Bandelet  
Sparse Geometric Image Representation 

 

Describe the image geometry with a geometric flow of vectors. These vectors 

give the local directions in which the image has regular variations. 

 

Orthogonal bandelet bases are constructed by dividing the image support in 

regions inside which the geometric flow is parallel. 

 

Optimized bandelet bases improve significantly image compression and 

denoisig results obtained with wavelet bases. 

 

 Proposed by Erwan Le Pennec and Stéphane Mallat. 
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Bandelet  
Geometric Flow 

 
 In a region Ω, a geometric flow is a vector field 𝜏 𝑥1, 𝑥2  which gives a 

direction in which 𝑓 has regular variations in the neighborhood of each 

𝑥1, 𝑥2 ∈ Ω. 

 

To construct orthogonal bases with the resulting flow, a first regularity 

condition imposes that the flow is either parallel vertically, which means that 

𝜏 𝑥1, 𝑥2 = 𝜏 𝑥1 , or parallel horizontally and, hence, 𝜏 𝑥1, 𝑥2 = 𝜏 𝑥2 . 

 

To maintain enough flexibility, this parallel condition is imposed within 

subregions Ω𝑖 of the image support. The image support 𝒮 is, thus, partitioned 

into regions 𝒮 =  Ω𝑖𝑖 , and within each Ω𝑖  the flow is either parallel 

horizontally or vertically. 
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Bandelet  
Geometric Flow 

 

Fig. (a) Example of flow in a region. Each arrow is a flow vector 𝜏 𝑥1, 𝑥2 . (b) Example of 

an adapted dyadic squares segmentation of an image and its geometric flow. 
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Bandelet  
Bandeletization 

 
 If there is no geometric flow over a region Ω, which indicates that the image 

restriction to Ω has an isotropic regularity, then this restriction is approximated 

in the separable wavelet basis of 𝐋𝟐(Ω). 

 

 If a geometric flow is calculated in Ω, this wavelet basis is replaced by a 

bandelet basis. 

 

Construct the bandelet basis when the flow is parallel in the vertical direction: 

𝜏 𝑥1, 𝑥2 = 𝜏 𝑥1 . 
 Normalize: 𝜏 𝑥1 = 1, 𝑐′ 𝑥1  

 𝑥min = inf
𝑥1

(𝑥1, 𝑥2 ∈ Ω} 

 

 A flow line is defined as an integral curve of the flow, whose tangents are 

parallel to 𝜏 𝑥1 . 

 Parallel vertically: a set of point 𝑥1, 𝑥2 + 𝑐 𝑥1 ∈ Ω for 𝑥1 varying, with 

𝑐 𝑥 =  𝑐′ 𝑢 𝑑𝑢
𝑥

𝑥min
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Bandelet  
Bandeletization 

 
Warpped image: 𝑊𝑓 𝑥1, 𝑥2 = 𝑓(𝑥1, 𝑥2 + 𝑐(𝑥1)). 

 

Ψ(𝑥1, 𝑥2) is a wavelet having several vanishing moments along 𝑥1 for each 𝑥2 

fixed, then the inner product 𝑊𝑓, Ψ = 𝑓, W∗Ψ  has a small amplitude. 

 

𝑊 is orthogonal: 𝑊∗𝑓 𝑥1, 𝑥2 = 𝑊−1𝑓 𝑥1, 𝑥2 = 𝑓(𝑥1, 𝑥2 − 𝑐(𝑥1)). 

 

Two equations above suggest decomposing 𝑓  over a family of warped 

wavelets obtained by applying 𝑊−1 to each wavelet of an orthonormal basis 

of 𝐋𝟐 𝑊Ω . 

𝜙𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 ,

𝜓𝑗,𝑚1
𝑥1 𝜙𝑗,𝑚2

𝑥2 ,

𝜓𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 𝑗,𝑚1,𝑚2∈𝐈𝑊Ω

 

𝜙𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 − 𝑐(𝑥1) ,

𝜓𝑗,𝑚1
𝑥1 𝜙𝑗,𝑚2

𝑥2 − 𝑐(𝑥1) ,

𝜓𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 − 𝑐(𝑥1)
𝑗,𝑚1,𝑚2∈𝐈𝑊Ω

 𝑊−1 

an orthonormal basis of 𝐋𝟐 𝑊Ω  a warped wavelet orthonormal basis of 𝐋𝟐 Ω  
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Bandelet  
Bandeletization 

 
 𝑓, W−1Ψ  is small if Ψ(𝑥1, 𝑥2) has vanishing moments along 𝑥1 for each 𝑥2.  

𝜙𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 ,

𝜓𝑗,𝑚1
𝑥1 𝜙𝑗,𝑚2

𝑥2 ,

𝜓𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 𝑗,𝑚1,𝑚2∈𝐈𝑊Ω

 valid 

Because the 1-D wavelet 𝜓(𝑡) has several 

vanishing moments, but the scaling 

function 𝜙(𝑡) has no vanishing moment. 

invalid 

Necessary to replace the family of 

orthogonal scaling  functions 

𝜙𝑗,𝑚1
𝑥1 𝑚1

 by an equivalent 

family of orthonormal functions, 

that have vanishing moments. 

The collection of scaling function 𝜙𝑗,𝑚1
𝑥1 𝑚1

 is an orthonormal basis of a 

multiresolution space which also admits an orthonormal basis of wavelets 

𝜓𝑙,𝑚1
𝑥1 𝑙>𝑗,𝑚1

. 

This suggests replacing the orthogonal family 𝜙𝑗,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 𝑗,𝑚1,𝑚2
 by 

the family 𝜓𝑙,𝑚1
𝑥1 𝜓𝑗,𝑚2

𝑥2 𝑗,𝑙>𝑗,𝑚1,𝑚2
. This is called a bandeletization. 
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Bandelet  
Partition 

 
Divide image into squares of varying dyadic sizes using quad tree 

 

 To represent the image partition with few parameters. 

 To be able to compute an optimal partition with a fast algorithm 

Fig. Example of dyadic square image segmentation. Each leaf of the corresponding 

quad tree corresponds to a square region having the same index number. 
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Bandelet  
Optimization 

 
Best approximation – minimize the approximation error 𝑓 − 𝑓𝑀  

 𝑀 = 𝑀𝐺 + 𝑀𝐵 
 𝑀𝐺 - number of parameters define a block bandelet basis constructed over this 

partition 

 𝑀𝐵 - number of bandelet coefficients above threshold 𝑇 (𝑓𝑀 is reconstructed 

from these coefficients) 

 

 Find a best bandelet basis that minimizes the Lagrangian 

ℒ 𝑓, 𝑇 = 𝑓 − 𝑓𝑀
2 + 𝑇2𝑀 

 

 Suppose that the image has contours that are 𝐶𝛼 curves which meet at corners 

or junctions, and that is 𝐶𝛼 away from these curves. 

 

 Optimal asymptotic error decay rate 

𝑓 − 𝑓𝑀
2 ≤ 𝐶𝑀−𝛼 
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Fig. (a) Geometric flow segmentation obtained for Barbara and 𝑅 = 0.44 bits/pixel. (b) 

The bandelet reconstruction with a PSNR of 31.3 dB. 

Bandelet  
Nonlinear approximation 
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𝑅 = 0.22 

bits/pixel 

𝑅 = 0.40 

bits/pixel 

Bandelet  
Nonlinear approximation 
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Bandelet  
Denoising 

 

Fig. Risk in PSNR of (full lines) the bandelet thresholding estimator and of (dashed lines) 

the wavelet thresholding estimator for the Lena and Barbara images as a function of the 

PSNR of the original noisy signal. The bandelet estimator reduces the risk by 

approximatively 1 dB for Lena and by 1.8 dB for Barbara. 
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Bandelet  
Denoising 
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Many Thanks  

Q & A 


