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Multiscale Geometry Analysis

Q Directional Wavelet
Q Curvelet

Q Contourlet
Q Bandelet
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Wavelet Transform
Fast 2D wavelet transform
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Wavelet Transform

Inverse 2D wavelet transform
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Stable Analysis and Synthesis Operators

wavelets and scaling functions

To reveal geometric image properties, wavelet frames are constructed
with mother wavelets having a direction selectivity, providing
Information on the direction of sharp transitions such as edges and
textures.

Wavelet frames yield high-amplitude coefficients in the neighborhood
of edges, and cannot take advantage of their geometric regularity to
Improve the sparsity of the representation.

Frames are potentially redundant and thus more general than bases,
with a redundancy measured by frame bounds. They provide the
flexibility needed to build signal representations with unstructured
families of vectors.
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Directional Wavelet Frames
Directional VVanishing Moment

A directional wavelet ¥ %(x) with x = (x1,x,) € R? of angle « is a vavelet
having p directional vanishing moments along any one-dimensional line of

direction a + = in the plane:
VpeR, [Y*(pcosa —usina,psina + ucosa)ufdu =0 for 0 < k < p,

but does not have directional vanishing moments along the c)lcizr‘ection a.
Directional wavelets may be derived by
rotating a single mother wavelet ¥ (x4, x,)
having vanishing moments in the horizontal
direction, with a rotation operator R, of
angle a in R?.

X1 =pcosa—usina
X, = psina +ucosa
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Directional Wavelet Frames
Ridgelet Transform

To overcome the weakness of wavelets in higher dimensions, Candes and
Donoho proposed ridgelets which deal effectively with line singularieies in 2-D.
X4

wavelet — qp, (¢) = %1/) (t ; u) N

lt=x1c059+xzsin9

Ridgelet N\ X1
1 X1 cos6 + x,sinf —u |
l/)u,s,é? (x) = \/§¢ ( S ) N
Ridgelet transform 02

\ J

O Ppepdx o]

CRTf(u,s,0) = jj

Ridgelet function which is oriented at an
angle 6 is constant along the lines
X1 €0s 0 + x,sinf = const
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Directional Wavelet Frames
Ridgelet Transform

In 2-D, points and lines are related via the Radon transform, thus the wavelet
and ridgelet transform are linked via the Radon transform.

Ridgelet transform CRTf(u,s,0) = J Oy s0(x)dx
Radon transform  Rf(6,t) = j f(x)6(xy cosB + x,sinf — t)dx

Ridgelet transform CRTf(u,s,0) = jt/)u’s(t)Rf(H, t)dt

Ridget transform can be calculated by applying 1-D wavelet transform to
Radon transform Rf (6, t) along t.
Rf(6,t) can be obtained from the projection-slice theorem.
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Directional Wavelet Frames
Ridgelet Transform

the Radon transform can be obtained by applying the 1-D inverse Fourier
transform to the 2-D Fourier transform restricted to radial lines going through
the origin.

f e BIRF (6, t)dt Fourier transform of Rf (0, t)

= Je—ift lj f(x)8(x1cosB + x,sin6 — t)dx|dt

= J f(x) lj e %8 (x, cos O + x, sin 6 — t)dt|dx '/Fi]lr:D|

ot

\
-

(oS o
_ M —i&(x, cos O+x, sin ) /ﬂ_'_ﬂ /-?f —
=] f(x)e 1 2 dx (" Radon o
\ durnay’
— M —ix1(& cos 0)—ix, (& sin 0) ol
=] f(x)e 1 2 dx a;,%“; -

RSN r/Hidgelet\.

= F(écosB,¢&sin0) dﬂmaif/‘/ﬁ"

o
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Directional Wavelet Frames
Ridgelet Transform
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Fig. 2. Ridgelet transform flowgraph. Each of the 27 radial lines in the Fourier
domain is processed separately. The 1-D inverse FFT is calculated along each
radial line followed by a 1-D nonorthogonal wavelet transform. In practice, the
1-D wavelet coefficients are directly calculated in the Fourier space.
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Directional Wavelet Frames
Dyadic directional wavelet transform

1 t—u g =2J 1 t—u
Yus® == (—) . D={¢u,zf(t)= 3y (—)
e \/E S @ 27 UueR, jez
wavelets Translation-invariant wavelet dictionaries

1-D dyadic wavelet transform: W £ (w,27) = (f,1,,,5) = f *,; (W)

1 X—Uu s =2J { o 1 X—Uu
¢ = —y“* » D= (x) =—=yY“ . }
Directional wavelets Translation-invariant directional wavelet dictionaries

Dyadic directional wavelet transform: Wf(u, 2/, a) = <f, z/)ffzj> =f* ;W
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Directional Wavelet Frames
Dyadic directional wavelet transform

Wi(w2,a) = (f.92,) = £+ 3@

A wavelet ng(x —u) has a support dilated by 27, located in the
neighborhood of u and oscillates in the direction of a + g

If f(x) Is constant over the support of 1/)1‘1"2 ; along lines of direction a + %
then <f, 1/)3,2 ,-> = 0 because of its directional vanishing moments.

In particular, this coefficient vanishes in the neighborhood of an edge
having a tangent in the direction a + %

If the edge angle deviates from « +§, then it produces large amplitude
coefficients, with a maximum typically when the edge has a direction a.
Thus, the amplitude of wavelet coefficients depends on the local orientation

of the image structures.
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Directional Wavelet Frames
Gabor Wavelets

Gabor wavelet: % (xq,x,) = g(xq, xp)e M (=¥1 sina+x; cos a)

. 1
Gaussian window: g(xy, x2) = - e~ (*1+x3)/2

Fourier transform: ¥%(w,, w,) = g(w,; + nsina, w, — 1 cos a)

1/7?,-((1)1,(1)2) = \/fg(zjwl +7nsina,2/w, —ncosa)

In the Fourier plane, the energy of this A~
Gabor wavelet is mostly concentrated

.\‘ / \: \
\\\ \\ [/

A\
|
|

.

sina mcosa. - -
around (—-—+—,—), in a neighborhood

proportional to 2—1J
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Directional Wavelet Frames
Gabor Wavelets

The wavelet transform energy |Wf(uw,2/,a)|? is large
when the angle a and scale 2/ match the direction and
scale of high-energy texture components in the

neighborhood of wu.

W f(u,273,7/2)| W f(u,275,0) (W f(u,274,7/2)| |W f(u,274,0))?
— — — — - _ _——
' .l
wN ’ ‘ e -
'e‘ " ," 1 P
(Rt ' a
‘ ,‘""!. | - - ‘ - |
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Directional Wavelet Frames
Gabor Wavelets

A translation-invariant wavelet transform W f(u,2/,«) for all scales 2/ , and
angle a requires a large amount of memory. To reduce computation and

memory storage, the translation parameter is discretized.

Translation-invariant directional wavelet dictionaries

D= {00 = 579

X — u)}
2J ueR?,a€0jez

Jlu =uy2/n

o 1 (x— U2/ n
D= ¥(x—uw) =3¢ 0
nez’?,a€0jez
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Curvelet
Dyadic Curvelet Transform

Curvelet frames were introduced by Candes and Donoho to construct sparse
representation for images including edges that are geometrically regular.

Similarity to wavelet: curvelet frames are obtained by rotating, dilating, and
translating elementary waveforms.

Difference: curvelets have a highly elongated support obtained with a
parabolic scaling using different scaling factors along the curvelet width and
length.

These anisotropic waveforms have a much better direction sensitivity than
directional wavelets.
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Curvelet
First Generation of Curvelets

First generation of curvelets are based on ridgelets. Applying ridgelet transform
to small blocks (a curved edge is almost straight at sufficiently fine scales)

frequencies
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Curvelet
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Dyadic Curvelet Transform (Second Generation)

A curvelet is function c(x) having vanishing moments along the horizontal
direction like a wavelet. However, as opposed to wavelets, dilated curvelets
are obtained with a parabolic scaling law that produces highly elongated

waveforms at fine scales:
c(x) = c(xq,x7)

| dilating

1 X1 X1
Cyj (x1,%2) = 23j/4 ¢ (Zj/Z ’E)

ﬂ rotating
ng(X) = Czj(Rax)
ltranslating

63’2 i) = cgj,u (x —u)

Cf(u, 27 a) = <f, Clc:,21'> = f « c‘gj(u)

Y(x) = c(xq,x7)
| dilating

1 X1 X1

Y,i(xq,x3) = EC (E'Z)
ﬂrotating

5(x) =P, (Ra)
ﬁ translating

l/’gj,u(x) = l/szzj(x —u)

Wi(w2),@) = (Fe,) = £+ § 5@
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Curvelet
Dyadic Curvelet Transform

1 X1 Xq X1 X1
Coi(X1,%2) = S35 € (21/2 'E) oy (X1, %2) = _C (21 21)

Curvelet frames were introduced by Candes and Donoho to construct sparse
representation for images including edges that are geometrically regular.

Similarity to wavelet: curvelet frames are obtained by rotating, dilating, and
translating elementary waveforms.

Difference: curvelets have a highly elongated support obtained with a
parabolic scaling using different scaling factors along the curvelet width and
length.

These anisotropic waveforms have a much better direction sensitivity than
difrectional wavelets.
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Curvelet
Dyadic Curvelet Transform

To obtain a tight frame, the Fourier transform of a curvelet at scale 2/ is
defined by
260

8, (w) & 2394 ;(2/r) ¢ (zlf/ZJn)’ with @ = r(cos 8, sin 6)

1-D wavelet 1-D angular window

8! A
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Curvelet
Dyadic Curvelet Transform

To obtain a tight frame, the Fourier transform of a curvelet at scale 27 is
defined by
260

&, (w) & 239/ (27T (zU/ZJn)’ with @ = r(cos8,sin )

1-D wavelet 1-D angular window

The wavelet 1 is chosen to have a compact support in [%, 2] and satisfies the
dyadic frequency covering:

00)

vreR', Y [(2/r)]" =1

j=—o

A translation-invariant dyadic curvelet dictionary is a dyadic translation-
Invariant tight frame that defines a complete and stable signal representation.
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Curvelet
Dyadic Curvelet Transform

To obtain a tight frame, the Fourier transform of a curvelet at scale 27 is
defined by

Theorem 1: (Candes, Donoho) For any feL?(R?)Im®

11 = ) 27392 3" [lef (.20, @),

JEz a€0;
and

flx) = 2 2_37j 2 cf(-,2/,a) x5 ().

JEz a€0;
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Curvelet
Curvelet Properties

Since the Fourier transform ¢,;(wq, w,) Is zero in the neighborhood of the
vertical axis w; = 0, ¢,;(xq,x3) has an infinite number of vanishing moments
In the horizontal direction

d01¢

Vw,, —— EYP

2 (O (1)2) =0= Vq = 0, V.Xz,j Czj(xler)xfdxl =0

A rotated curvelet ¢ 2] has vanishing moments in the direction a + /2,
whereas its support is elongated in the direction a.
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Curvelet
Discretization of Translation

Curvelet tight frames are constructed by sampling the translation parameter u.
These tight frames provide sparse representations of signals including regular
geometric structures.

= {Czof,zf (x)}

ueR?,a€0jez

lur(r]z.’a) = Ry (27/7my, 27my)

D = {c-“ x) = c%(x —ud® }
],m( ) 2]( m ) mez?,a€0,jez

The curvelet sampling grid depends on the scale 2/ and on the angle a.
Sampling intervals are proportional to the curvelet width 2/ in the direction
a + /2 and to its length 2//2 in the direction a.
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Curvelet
Discretization of Translation

The curvelet sampling grid depends on the scale 2/ and on the angle «a.
Sampling intervals are proportional to the curvelet width 2/ in the direction
a + /2 and to its length 2//2 in the direction a:

vm = (my, my)ez?, u,(,{’a) = R,(27?my, 2’ m,)

V| T o+ /2
N/ ~ 973/2

Frequency tiling Spatial sampling
1
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Curvelet
Discretization of Translation

This curvelet family is a tight frame of L?(R?).

D = {c-“ x) = c%(x — ud® }
],m( ) 2]( m ) mez?,a€0,jez

Theorem 2: (Candes, Donoho) For any feL?(R?)

=5 S |(resu) |

Jez a€0;

FO =Y Y {fet,) om0,

i ; 2
Jez a€®j mez

and
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Curvelet
Wavelet versus Curvelet Coefficients

An edge is covered by fewer curvelets than wavelets having a direction equal
to the edge direction.

If the angle a of the curvelet deviates from 8, then curvelet coefficients decay

quickly because of the narrow frequency localization of curvelets. This gives a
high-directional selectivity to curvelets.

Directional wavelets Curvelets
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Curvelet
Fast curvelet Decomposition Algorithm

The fast curvelet transform replaces the polar tiling of the Fourier domain by a
recto-polar tiling.

Computation of the two-dimensional DFT f[k] of f[n].

For each j and the corresponding 277212 angles «, calculation of
flk1ef [—k].

Computation of the inverse Fourier transform of f [k]¢* [—k] on the smallest
possible warped frequency rectangle including the wedge support of ¢/ [—k].

Discrete frequency tiling
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Curvelet
Denoising

Fig 5. (Top left) Noisy image and (top right) filtered images using the decimated wavelet transform, (bottom left) the undecimated wavelet transform and the
(bottom right) curvelet transform.



Contourlet

Fast curvelet Decomposition Algorithm

29/59

curvelet constructions require a rotation operation and correspond to a 2-D
frequency partition based on the polar coordinate. This makes the curvelet
construction simple in the continuous domain but causes the implementation
for discrete images—sampled on a rectangular grid—to be very challenging.

In particular, approaching critical sampling seems difficult in such discretized

constructions.

This fact motivates the development of a directional multiresolution transform
like curvelets, but directly in the discrete domain, which results in the

contourlet construction.

The Laplacian pyramid is first
used to capture the point
discontinuities, and then followed
by a directional filter bank (DFB)
to link point discontinuities into

linear structures. image ——

Laplacian Pyramid

/F\ bandpass
- —=}(2,2) - directional
. D subbands
\\ | // bandpass
- —— directional
] .~ subbands
/ [\

Directional Filter Banks
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Contourlet
Laplacian Pyramid

The LP decomposition at each level generates a downsampled lowpass version
of the original and the difference between the original and the prediction,

resulting in a bandpass image. In particular, approaching critical sampling
seems difficult in such discretized constructions.

¢ lowpass

M= [0 2
. H —@ fl\){ E—_{T—E—) bandpass

N

analysis filter ~ sampling matrix  synthesis filter

xqlnqi,nz] = x[2n4, 2n,]

1 1

ZZ 1 — 21 a)z—an
> )

j=01i=0

(1)1, (1)2

-PIH



31/59

Contourlet
Traditional 2D filter banks

® Traditional separable 2D filter banks

1-D filter |

I
— -1

|
1-D filter Output

Input

Rows Columns
Separable Filters

B!

w EE“:_rl

/ H _Ir{-z‘_;\. 1.H e R
Only ReCtangular Shape — - _(ﬂ‘\ S - ai
| m, H i
e
- Hy —i'gj)—-u IL IH HL HH

VETTICA]

hotazontal
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Contourlet
Quincunx Filter Bank

® Traditional Directional Filter Banks

® A simple example of 2-channel directional filter banks

)4

—

: [ ‘ ——| More flexible
H . partition

2-D filter 1 2-D filter 2 Output
[ xen) .
" 1 1 Non-Separable Filters
“Xfo}
HiE ﬁ_
R

#
G
MY




Contourlet
2-D Sampling

33/59

Example 1: Sampling matrix M = [_21 ﬂ

Integer lattice A = Z?

Sublattice Ay; = {Mn:n € A} = {Mn:n € A}

Integer lattice A

:nz
-....5 [ ]
-4 »
[ ) 'P3 [ ] ®
+2
] —+1
. . . y
1 2 3 4 5 6 7 R

Lattice Ay, generated by sampling matrix M



Contourlet
2-D Sampling

Downsampled signal x;[n] = x[Mn]

Downsampled signal in frequency domain X, (wq, w,)? .

an + n,
—Nq + no,

Xa2
kg =—>

n X(n)

2 |Xoa| P2 'x; LV

1 |Xo |x11] Xa1] X3

0 x.; X10 "20 Xao[— My
0 1 2 3 4

n, yin)
2 Xz2| [Xa
1 (X144 Ig
OXgo—F+— M
0 1

Example 1: Downsampling with matrix M = [_2 1

Mn = —21 ﬂ [Z;] :[

ooooooo

'''''''

........
ttttttt
uuuuuuuu

--------

-------
-------
.......
-------

-------

---------
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555555555

My
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Contourlet
2-D Sampling

1-D sampling X (w) - Mz_:lx(w 27Tk) ERKEZMEL
- dw — — T T w ) )
M ™M M

|det(M)|—-1
2-D samplin X = z XM Tw—2rM Tk
p g d((I) |det(M)| - ( w n l)
vector Integer matrix coset vector

Example 1: Subsampling with matrix M = [_21 ﬂ

|det(M)| = 3

o= 3ok = 1o =
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Contourlet
2-D Sampling
E ) . . o 12 1
xample 1: Upsampling with matrix M = [_1 1
1171 -1 1, 1M —Nz1 el SR
K| Y T SEEEE ST
- _(x[M7n], ifMIn €A Crnioooopriitiioe
Upsampled signal x“[n]_{o, otherwise crriiiiliiiiin
Upsampled signal in frequency domain X, (w4, w;)? | N
ny Ao
n, xn) n, :
2 X2 @ 2 @ y(m) '2.' .
o | 3 IR
o Pd—d—fad o o frd——— A PR
0 1 2 ; @ E;I ib)

2 x,[3,0] = x[1,1]
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Contourlet

2-D Sampling
1-D upsampling 2-D upsampling
Xy(w) = X(Mw) Xy(w) = (M'w)

Example 1: Upsampling with matrix M = [_21 1
201 — W n i x e
_mT N 1 2 S 4 s
Xu(@) = MTw) = [0 7 c
The rectangular spectral region ’ R °
{_T[ < w1 < T[} N {—T[ < Wo < T[} -TE‘KC t B:: ! Zc )

IS mapped to the parallelogram-shaped region

{(—nm<2w—w, <m}N{—7n<w +w, <7}
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Contourlet
Directional Filter Bank

Theorem 2: (Multirate identities) Downsampling by M followed
by filtering with a filter H(w) is equivalent to filtering with the
filter H(MTw) which is obtained by upsampling H(w) by M,

before downsampling.

™ I TN
(M) Hw) H(M w) ——{iM—

|

Proof:
y1ln] = x[Mn] * h[n]
y2Inl = (x[n] * hy[n]) { M = x[Mn] * h[n]
= y1ln] = y,[n]
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Contourlet
Directional Filter Bank
Quincunx sublattice with matrix Q, = [ _1] 0, = [ : 1

|det(Qy)| = [det(Q1)] = 2, one out of two points is retained.

)@ ® O
Yo N 5 B
Hﬂ f’f@ . |1'Q| Gﬂ : ) 3
~ QO @O @O @
1 i oo
A N )
A Y1 N I 0
Hl l\! qf‘ "‘i Q;" Gl (o . """ Q- . **** k?,- ————— .

X(w) = = [Hy(w)Gy(w) + Hy ()G (w)]X(w) +

N =N =

[Hy(w + m)Gy(w) + Hi(w + 1) 61 (w)] X (w + )



Contourlet
Directional Filter Bank
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First two levels of Quincunx Filter Bank

)| e
» GL .
TN
4m Q) — 2
TN N
P
Q)
Wi w1
i E— (ﬂ-ﬂ.) _____ (ﬂ.a ﬂ-)
A SNy S
s 0 .
A I
sl Wo Wwo
(—m, —m) (—m, —m)

1 -1
QO_ 1 1]
711
Ql_ _1 1
1 ()
0 1
3
2 wo
1 0
(_ﬂ-?_ﬂ-)
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Contourlet
Directional Filter Bank

Ro=[p 4l

o
1
youN
l\? ")

/- _.._\I .-/ f.'_\,ll
&/ \&/
| !
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I
o
T
S\ S\
=/ &)
| |
— o

o 7]

L
Ny
] l
S\ e
| D)
NGNS
| |
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Il]
|<*'U_\I |/\/j_>
-/ -
[
- o
-
e
Il
o
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H,, Fiq
w w w
| (m,m) 1 (m,m) T (m,m) Al mm)
. 0 i 0| 1 o\ 2/
= 20k 1 2 3
i 5 5
wWo wo 3 5 Wo 6 5 | Wo
AT Eiie Ny 1 0 7 //’ 4
il B s/, | \o
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Contourlet
Multiscale

Under certain regularity conditions, the lowpass synthesis filter in the iterated
LP uniquely defines a unique scaling function ¢ (t) € L,(R?) that satisfies the
following two-scale equation

6© =2 ) glnlp(2t —n)

nez?

{qu,n(t) = %(t)gb (t_zzjjn)} . IS an orthonormal basis for approximation
ne

subspace V; at scale 2/.

(i) 1 ~ (t=2/n . ]
{ in() = ty® ( ~ )}O<i<3 i Is a tight frame for W
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Contourlet

Multiscale
1 - -
{A](l’r)z(t) = Dimez? d,(cl)g(t) [m — Slgl)n]'uj'm(t)}neﬁ IS a tight frame of a
detail directional subspace W](Q
“2 j+1;—2
L2 - )

J,k,m

(a) (b)

Fig. 9. Contourlet subspaces. (a) Multiscale and multidirection subspaces
generated by the contourlet transform which i1s illustrated on a 2-D spectrum
decomposition. (b) Sampling grid and approximate support of contourlet

functions for a “mostly horizontal” subspace 1'; 7. For “mostly vertical”
subspaces, the grid is transposed.
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Contourlet
Wavelet VVersus Contourlets

Contourlets offer a much richer set of directions and shapes
Contourlets are more effective in capturing smooth contours and

geometric structures in images.

00 150 200 250

Wavelets contourlets
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Contourlet
Nonlinear approximation

Nonlinear approximation by the wavelet and contourlet transforms. In each case,
the original image Barbara of size 512X512 is reconstructed from the 4096-
most significant coefficients. Only part of images are shown for detail

comparison.

(

%

m

Original image Wavelet NLA: PSNR = 24.34 dB Contourlet NLA: PSNR = 25.70 dB
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Contourlet
Denoising

Fig. 17. Denoising experiments. From left to right, top to bottom are:
original image, noisy image (PSNR = 24.42 dB), denoising using wavelets
(PSNR = 29.41 dB), and denoising using contourlets (PSNR = 30.47 dB).
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Contourlet
Properties

The contourlet expansions are defined on rectangular grids. Its kernel
functions cannot be obtained by simply rotating a single function.

Contourlets have 2-D frequency partition on centric squares, rather than
centric circles.

The contourlet transform has fast filter bank algorithms and convenient tree
structures.

With FIR filters, the iterated contourlet filter bank leads to compactly
supported contourlet frames.
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Bandelet

Sparse Geometric Image Representation

Describe the image geometry with a geometric flow of vectors. These vectors
give the local directions in which the image has regular variations.

Orthogonal bandelet bases are constructed by dividing the image support in
regions inside which the geometric flow is parallel.

Optimized bandelet bases improve significantly image compression and
denoisig results obtained with wavelet bases.

Proposed by Erwan Le Pennec and Stéhane Mallat.
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Bandelet

Geometric Flow

In a region Q, a geometric flow is a vector field 7(x;,x,) which gives a
direction in which f has regular variations in the neighborhood of each
(x1;x2) € Q.

To construct orthogonal bases with the resulting flow, a first regularity
condition imposes that the flow is either parallel vertically, which means that
T(x4,x,) = T(xq1), or parallel horizontally and, hence, 7(x{,x,) = T(x,).

To maintain enough flexibility, this parallel condition is imposed within
subregions (); of the image support. The image support § is, thus, partitioned
Into regions § = U;Q;, and within each Q; the flow is either parallel
horizontally or vertically.
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Bandelet

Geometric Flow

(b)

Fig. (a) Example of flow in a region. Each arrow is a flow vector 7(x4, x,). (b) Example of
an adapted dyadic squares segmentation of an image and its geometric flow.
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Bandelet

Bandeletization

If there Is no geometric flow over a region 2, which indicates that the image
restriction to € has an isotropic regularity, then this restriction is approximated
in the separable wavelet basis of L% ().

If a geometric flow is calculated in Q, this wavelet basis is replaced by a
bandelet basis.

Construct the bandelet basis when the flow is parallel in the vertical direction:
T(xq, x2) = T(xq).
Normalize: 7(x;) = (1,¢'(xy))
Xmin = i)?f{(xlrxz) € (1}
1

A flow line is defined as an integral curve of the flow, whose tangents are
parallel to T(x;).
Parallel vertically: a set of point (x{,x, + c(x;)) € Q for x; varying, with

c(x) = f;min c'(w)du
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Bandelet

Bandeletization

Warpped image: W f(xq, x,) = f(x1,%x5 + c(x1)).

W(x4,x,) Is a wavelet having several vanishing moments along x; for each x,
fixed, then the inner product (W f, W ) = (f, W*W¥ ) has a small amplitude.

W is orthogonal: W*f(xy,x,) = W™ 1f(xy, x5) = f(xg, x5 — c(x1)).
Two equations above suggest decomposing f over a family of warped

wavelets obtained by applying W~ to each wavelet of an orthonormal basis
of LZ(WQ).

(Pj,ml (xl)lpj,mz (x2), ¢j,m1 (xl)lpj,mz (x3 — c(x1)),
{llij,m1 (X1)Pjm, (Xz);} L{lpﬁml (x1)Pjm, (xz — C(M)l}
lpj,ml (xl)lpj,mz (x2) wj,ml (xl)l/)j,mz (x2 — c(x1))

jmymo€lyq Jjmymy€lyq

an orthonormal basis of L2 (W Q) a warped wavelet orthonormal basis of L% ()
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Bandeletization

(f Wiw ) is small if ¥ (x4, xz) has vanishing moments along x, for each x,.

Pjim. ) ¥jm, (¥2), a ;

h/)] m, (X1 Pjm, (xz),I valid . Necessary to replace the family of

¢ ()W m (3! | . orthogonal scaling functions
L YR M T22Y jmy maelg v {Pim, (xl)}m1 by an equivalent

family of orthonormal functions,

. Because the 1-D wavelet (t) has several ' -
! ; that have vanishing moments.

. vanishing moments, but the scaling
“.function ¢ (t) has no vanishing moment. ,

________________________________________________________________________________________________________________________

The collection of scaling function {gb]-m1 (xl)}m IS an orthonormal basis of a
1
multiresolution space which also admits an orthonormal basis of wavelets

{lplml xl)}

I>jmq
This suggests replacing the orthogonal family {¢; ,n, (¢1)¥; m, (xz)}] _— by
the family {1 m, (x )W m, (x2)} . . This is called a bandeletization.

L1>jmyms,
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Partition

Divide image into squares of varying dyadic sizes using quad tree

To represent the image partition with few parameters.
To be able to compute an optimal partition with a fast algorithm

o )
20 21 22 23

/ *,
4 _ 124 125 126 127
125] 126

124|127

Fig. Example of dyadic square image segmentation. Each leaf of the corresponding
quad tree corresponds to a square region having the same index number.
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Optimization

Best approximation — minimize the approximation error |[f — fy ||

M = M. + Mg

M. - number of parameters define a block bandelet basis constructed over this
partition

My - number of bandelet coefficients above threshold T (f,, is reconstructed
from these coefficients)

Find a best bandelet basis that minimizes the Lagrangian
L, T) =If — full® +T*M

Suppose that the image has contours that are C* curves which meet at corners
or junctions, and that is C% away from these curves.

Optimal asymptotic error decay rate
If — full* < CM~@
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Nonlinear approximation
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Fig. (a) Geometric flow segmentation obtained for Barbara and R = 0.44 bits/pixel. (b)
The bandelet reconstruction with a PSNR of 31.3 dB.
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Nonlinear approximation

Bandelets Wavelets
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Denoising
— Bandelets 36. — Bandelets
36H - - Wavelets - - Wavelets
34¢
34t o
Z, 32"
75
327 ™ 300 |
= 7
30' ‘M 28_
iz
ogl | o 26+ P
" 24"
264 : . . . . .
15 20 25 30 15 20 25 30
Noisy PSNR Noisy PSNR
Barbara

Fig. Risk in PSNR of (full lines) the bandelet thresholding estimator and of (dashed lines)
the wavelet thresholding estimator for the Lena and Barbara images as a function of the

PSNR of the original noisy signal. The bandelet estimator reduces the risk by

approximatively 1 dB for Lena and by 1.8 dB for Barbara.
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Denoising

Bandelets Wavelets
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